

Brad Davis, Ph.D., S.E., P.E.**Davis Structural Engineering, LLC**

P.O. Box 911142
Lexington, KY 40591
BradD@DavisStructures.com
Phone: 859-490-8833
DavisStructures.com

Education Ph.D., Civil Engineering, 2008, Virginia Tech

Dissertation: "Finite Element Modeling for Prediction of Low Frequency Floor Vibrations Due to Walking"

M.S., Civil Engineering, 1996, Virginia Tech

B.S., Civil Engineering, 1994, Virginia Tech

Professional Positions Owner; Davis Structural Engineering, LLC; 2017-Present

Assistant / Associate Professor of Civil Engineering, University of Kentucky, 2009-Present

Structural Design Engineer, Structural Design Group, Nashville, TN, 2000-2005

Structural Design Engineer, Stanley D. Lindsey and Associates, Nashville, TN, 1998-2000

Structural Engineer; Hayes, Seay, Mattern, and Mattern; Roanoke, VA, 1997-1998

Research Engineer, American Buildings Company, Eufaula, AL, 1996-1997

Capabilities

- Structural Vibrations. Visit **DavisStructures.com** for detailed information.
 - Vibration testing for sensitive equipment applications
 - Experimental modal analysis and analytical calculations
- Structural Forensics
- Advanced applications in structural dynamics, structural analysis, and stability
- Structural Design: all major building materials, including cold-formed steel
- Structural Steel Connection Design
- Design of Steel Stairs and Guardrail Systems
- Development of Software and Design Aids
- Continuing Education Courses, Seminars, and Technical Writing
- Destructive Experimental Evaluations of Strength and Stiffness

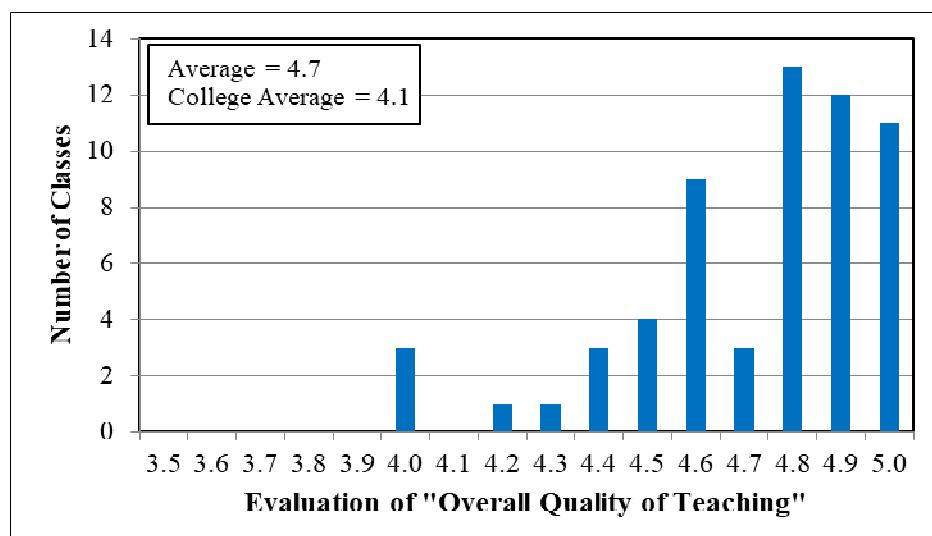
Professional Licenses

State	Type	Number
Alabama	P.E. (Structural)	38503
District of Columbia	P.E. (Structural)	PE922574
Florida	P.E. (Structural)	88019
Georgia	P.E. (Structural)	PE044957
Illinois	S.E.	081-006088
Kentucky	P.E. (Structural)	32008
Massachusetts	P.E. (Structural)	55810
Mississippi	P.E. (Structural)	30396
North Carolina	P.E. (Structural)	048445
Ohio	P.E. (Structural)	PE.84820
South Carolina	P.E. (Structural)	ELS.37394
Tennessee	P.E. (Structural)	105257
Texas	P.E. (Structural)	152777
Virginia	P.E. (Structural)	0402041235
West Virginia	P.E. (Structural)	23682

Project Experience Highlights

Vibration Site Surveys	Measured and assessed vibrations of structures supporting sensitive equipment. <ul style="list-style-type: none">▪ Clayton Cataract and Eye Surgery, Morrow, GA – Sensitive Microscopes (2025)▪ Vanderbilt TVC4 Fourth Floor Lab Survey – Sensitive Line Testing Equipment (2025)▪ Delaney Radiology, Wilmington, NC – MRI (2024)▪ Ogden Regional Medical Center, Ogden, UT – CT imagers (2023)▪ Baptist Health Medical Center, Little Rock, AR – MRI and Cath Lab (2021)▪ Shepherd Center, Atlanta, GA – MRI (2018)▪ Redmond Regional Hospital, Rome, GA – MRI (2017)▪ University of Kentucky Academic Sciences Building Laboratories – Sensitive equipment (2016)▪ Rupp Arena, Lexington, KY – Balcony Vibrations Affecting Television Cameras (2015)▪ Centennial Medical Center, Nashville, TN – Hybrid OR Equipment (2008)
Vibration Design Assistance	Provided vibration engineering during the design phase. <ul style="list-style-type: none">▪ Hyattsville Elementary School, MD – Gymnasium (2025)▪ University of Wisconsin, Madison, Camp Randall Athletic Facility – Elevated Track (2024)▪ Redeemers Church of Christ, Lanham, MD – Balcony Vibrations (2024)▪ University of Kentucky Funkhouser Building Renovation – Sensitive Equipment (2024)▪ Saint Thomas West Hospital, Nashville, TN – PET/CT (2021)▪ Liberty University, Lynchburg, VA – Balcony Vibration (2014)▪ St. Anthony Hospital, Denver, CO – MRI floor vibration (2009)▪ WTC Transit Hub, NYC – Floor and Stair Vibrations (2008)▪ Quest Community Church, Lexington, KY, balcony vibration (2008)
Forensics and Vibration Reduction Projects	Design vibration-reduction solution, expert for EOR's legal team, or expert for owner's legal team. Cannot disclose structure names. <ul style="list-style-type: none">▪ Office with vibrations due to walking – assessed (potential expert) for EOR's legal team (2024)▪ Fine arts center with report vibrations due to walking – expert for the EOR's legal team (2024)▪ Medical center rehab facility with barbell impacts – designed vibration-reduction solution (2023)▪ Multi-story condo – investigated intermittent vibrations (2022)▪ Monumental stair with uncomfortable vibrations – designed vibration-reduction solution (2021)▪ Single family residence with uncomfortable vibrations – expert for owner's legal team (2018)▪ Hospital lobby with vibrations due to walking – designed vibration reduction solution (2018)▪ Office floor with vibrations due to walking – designed vibration-reduction solution (2017)▪ Hospital with floor vibrations near CT scanner – designed vibration reduction solution (2010)
Construction Vibrations	Assisted contractor by measuring and assessing vibrations. Cannot disclose structure names. <ul style="list-style-type: none">▪ Historical facility with priceless irreplaceable artifacts with nearby demolition activities (2022)▪ Fortune 500 corporate data center with servers very close to demolition activities (2018)
Structural Design	<ul style="list-style-type: none">▪ Norfolk Naval Shipyard Heat and Power Plant: steel connections, 600 ton project (2022)▪ StoneCrest Medical Center, Smyrna, TN: designed steel-framed structure while at Structural Design Group (2003)▪ Vanderbilt Children's Hospital, Nashville, TN: designed post-tensioned and conventional concrete structure while at Structural Design Group (2002)▪ Parrish Medical Center, Titusville, FL: designed replacement hospital with steel moment frames and composite framing while at Stanley D. Lindsey and Associates (1999)

Awards


- 2009, 2013, 2021, and 2023 Outstanding Civil Engineering Teaching Award, University of Kentucky.
- 2016 Educator Special Achievement Award, American Institute of Steel Construction (AISC), for developing new vibration evaluation criteria for steel-framed floors supporting sensitive equipment.
- 2010 Outstanding Young Alumni Award, Virginia Tech Civil and Environmental Engineering Department.
- 2008 Best Overall Paper at the ASCE Architectural Engineering National Conference.
- 2005 Charles E. Via Fellowship, Virginia Tech.
- 2005 Walter P. Moore Structural Engineering Fellowship.

Memberships

- AISC Manuals Committee member, 2003-Present
- Steel Joist Institute
- Cold-Formed Steel Engineers Institute
- Steel Tube Institute
- AISC Solutions Center Consultant
- ASCE Structural Engineers Institute
- ASTM International: Structural Acoustics and Vibration

**University
Teaching**

- *Structural Analysis and Design*
 - Basic topics in structural analysis, steel, concrete, and wood design.
- *Steel Structures*
 - Traditional course in structural steel, including frame stability and composite beams.
- *Advanced Steel Design*
 - Slender and unsymmetrical columns and plate girders, connections, and frame stability.
- *Design of Light Framing Systems*
 - Wood and cold-formed steel members and connections.
- *Design of Structural Systems*
 - ASCE 7 loads, floor vibrations, lateral force resisting systems including diaphragms, computerized analysis and design.
- *Intermediate Structural Analysis*
 - Indeterminate Structures, Loads of Unknown Locations, Matrix Structural Analysis.
- *Advanced Structural Analysis*
 - Matrix Structural Analysis, Geometric Nonlinear Analysis, Frame collapse.

Publications

Design Guides (Books)

- Murray, T.M., Ungar, E.E., Davis, B. (2019), *Facts for Steel Buildings No. 5, Vibrations*, AISC.
- Murray, T.M., Allen, D.A., Ungar, E.E., Davis, B. (2016), *Design Guide 11: Vibration of Steel-Framed Structural Systems Due to Human Activity*, AISC.
- Murray, T.M. and Davis, B. (2015), *Technical Digest No. 5 – Vibration of Steel Joist-Concrete Slab Floor*, Steel Joist Institute.

Peer-Reviewed Journal Articles (Total of 14. Eight in top quartile journals. Highlights below.)

- Royvaran M., Avci O., and Davis B. (2021), "Effect of Non-Structural Components on the Dynamic Response of Steel-Framed Floors: Tests Before and After Component Installations," *Front. Built Environ.* 7:725106.
- Abdeljaber, O., Hussein, M., Avci, O., Davis, B., and Reynolds, P. (2020), "A Novel Video-Vibration Monitoring System for Walking Pattern Identification on Floors," *Advances in Engineering Software*, 139(1), 102710.
- Royvaran, M., Avci, O., and Davis, B. (2020), "Analysis of Floor Vibration Evaluation Methods using a Large Database of Floors Framed with W-Shape Members Subjected to Walking Excitation," *Journal of Constructional Steel Research*, 164(1), 105764.
- Davis, B., and Liu, D. (2019), "Walking-Induced Vibration of Steel-Framed Floors Supporting Sensitive Equipment," *Engineering Journal*, 56(3), 159-172.
- Younis, A., Avci, O., Hussein, M., Davis, B., and Reynolds, P. (2017), "Dynamic Forces Induced on Building Floors by a Single Walking Pedestrian: A Literature Review," *Applied Mechanics Reviews*, 69(2).
- Davis, B. and Avci, O. (2015), "Simplified Vibration Serviceability Evaluation for Slender Monumental Stairs," *Journal of Structural Engineering*, ASCE, 141(11), 04015017-1 – 04015017-9.
- Liu, D. and Davis, B. (2015), "Walking Vibration Response of High Frequency Floors Supporting Sensitive Equipment," *Journal of Structural Engineering*, ASCE, 141(8), 04014199-1 – 04014199-10.
- Davis, B., Liu, D., and Murray, T.M. (2014), "Simplified Experimental Evaluation of Floors Subject to Walking Induced Vibrations," *Journal of Performance of Constructed Facilities*, ASCE, 28(5), 04014023-1 – 04014023-8.
- Davis, D.B., Barrett, A.R., and Murray, T.M. (2011), "Use of a Force Plate Versus Armature Accelerometer for Measuring Frequency Response Functions," *Experimental Techniques*, 35(1), 73-79.
- Davis, D.B. and Murray, T.M. (2009), "Slender Monumental Stair Vibration Serviceability," *Journal of Architectural Engineering*, ASCE, 15(4), 111-121.

Magazine Articles and White Papers

- Davis, B. and Fox, D. (2026), "Technical Note: Vibration of CFS Joist Framed Floors," Cold-Formed Steel Engineers Institute.
- Davis, B. (2026), "Natural Frequency Lower Limit for Floors," Steel Joist Institute.
- Davis, B. (2025), "Mindful of Movement," (Vibration of Sports and Recreational Facilities), *Modern Steel Construction*, November, 14-19.
- Samuelson, D., Davis, B., Murray, T.M. (2023), "Vibration of Steel Joists with Flush Frame End Connections," *STRUCTURE*, November, 48-52.
- Murray, T., Davis, B., Whiteman, J. (2021), "Examining the Relationship Between Vibration, Frequency and Steel Joists," White Paper, Steel Joist Institute, Florence, SC. (<https://steeljoist.org/resources/examining-the-relationship-between-vibration-frequency-and-steel-joists/>)
- Murray, T.M., Davis, B. (2020), "Vibration of Vulcraft Steel Joists with Flush Framed and Flush Bearing Seat Connections," White Paper, Vulcraft, Charlotte, NC. (https://vulcraft.com/files/Literature/Technical/Vibration_of_Vulcraft_Steel_Joists_with_Flush_Framed_Seats_1_28_2020.pdf)
- Davis, B., Salmon, J. (2019), "Steelwise: Structural Vibration Serviceability," *Modern Steel Construction*, December, 16-21. (<https://www.aisc.org/globalassets/modern->

[steel/archives/2019/december2019.pdf](https://www.aisc.org/globalassets/modern-steel/archives/2019/december2019.pdf)

- Davis, B. (2017), "Sheer Improvement to Shear Design," Modern Steel Construction, August. <https://www.aisc.org/globalassets/modern-steel/archives/2017/08/shearimprovementtosheardesign.pdf>

Conference Papers (Total of 18. Highlights Below.)

- Royvaran, M., Donohue, K and Davis, B. (2020), "Localization of Stationary Source of Floor Vibration Using Steered Response Power Method," *Proceedings of the International Modal Analysis Conference*, Society for Experimental Mechanics.
- Davis, D.B. and Murray, T.M. (2009), "Comparisons of Measured and Predicted Modal Properties for Steel Framed Floors," *Proceedings of 2009 IMAC-XXVII*, The Society for Experimental Mechanics.

Invited Conference Presentations (Highlights Below)

- Davis, B. (2025), "Solving Vibration Problems in Structures," The Flash Steel Conference, AISC.
- Davis, B. (2025), "Vibration of Recreational and Sports Facilities," The North American Steel Conference, AISC.
- Davis, B. (2025), "Avoiding Vibration Problems in Steel Joist Concrete Floors," The North American Steel Conference, AISC.
- Davis, B. (2023), "Steel-Framed Floor Design for Vibration-Sensitive Equipment," The North American Steel Conference, AISC.
- Murray, T.M. and Davis, B. (2019), "Structural Vibration Serviceability – FAQ and More," North American Steel Construction Conference, AISC.
- Davis, B. (2016), "Steel Framed Floor Design for Vibration-Sensitive Equipment," North American Steel Construction Conference, AISC.
- Davis, B. (2010), "Simplified Finite Element Method for Predicting Low Frequency Floor Vibration Due to Walking," North American Steel Construction Conference, AISC.

Invited Speaking Engagements

- Over 35 engagements. Highlights below.
- AISC Live Webinar Series (2025), "Connections: Fundamentals and Shear Connections," four 90 minute sessions, 150 attendees per session.
- Cold-Formed Steel Engineers Institute (2025), "Vibration Serviceability of Floors with Cold-Formed Steel Framing," 90 minutes, 300 attendees.
- Steel Joist Institute (2025), "Vibration of Floors Supported by Open Web Steel Joists: Overview and Recent Innovations," 90 minutes, 150 attendees.
- SE University (2024), "Vibration Analysis of Steel Joist / Concrete Floors," 90 minutes, 2000 attendees.
- AISC Night School 35 (2024), "Fundamentals of Connection Design," six 90 minute sessions, attendance ranged from 475 to 775 per session.
- AISC Live Webinar Series (2022), "Vibration Serviceability: Overview of AISC Design Guide 11 and Q&A," 90 minutes, 300 attendees.
- NASA Marshall Space Flight Center (2019), "Steel Moment Connection Design," 24 hours.
- AISC Night School Webinar (2016), "Vibration of Steel Framed Structural Systems Due to Human Activity: Sensitive Equipment, Monumental Stairs, and Retrofitting," 90 minutes, 400 attendees.
- Structural Engineers Association of Arkansas Annual Conference Keynote Speaker (2015), "Structural Vibration Serviceability: Technical Background, Sensitive Equipment, and Monumental Stairs," four hours.
- NCSEA Webinar (2014), "Floor Vibration Serviceability, Technical Background, and AISC Design Guide 11, Parts 1 and 2," 180 attendees.